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Abstract
A new class of periodic solutions of modified complex Ginzburg–Landau
equation phase locked to a time-dependent force, by applying a nonfeedback
mechanism for chaos control, have been found. The reported solutions
are necessarily of the rational form containing trigonometric and hyperbolic
functions.

PACS number: 05.45.Yv

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Much attention has been paid to the study of the most ubiquitous spatiotemporal (ST) chaos
prevalent in the equations of nonlinear dissipative systems, in the recent past. Although
chaos may be advantageous in some situations, in many other situations it should be avoided
or controlled [1–4]. Various techniques such as different feedback mechanisms [1, 5]
and nonfeedback control mechanisms [4, 6, 7, 9–13], have been devised in that order for
suppressing chaos and converting a chaotic behaviour into a desired regular one, as well. For
example, the problem of suppressing chaos by harmonic (or periodic) perturbations has become
the object of intensive study in recent years. Geometric resonance (GR), an elegant route to
eliminate chaos [14], falls in that category. As the periodic perturbation methods suffer from
the deficiency of lack of common concept for constructing appropriate perturbations, which
direct the trajectory to the target, the method of appropriate nonfeedback control mechanism
comes in handy to convert the chaotic behaviour into the desired ones. In [14, 15], González
et al used the concept of geometric resonance as a method of chaos control to a very general
class of ST chaos exhibited by the sine-Gordon, nonlinear Schrödinger, Boussinesq, Toda
lattice and complex Ginzburg–Landau equations, when these are nonintegrable. GR is an
extension of the linear-system-based notion of resonance to a fully nonlinear formulation
based on a local energy conservation requirement [7].
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The recently formulated concept of GR [7] provides a mechanism for nonfeedback control
of chaos. This has been delineated in the present work that deals with another equation of the
Ginzburg–Landau-type with an ac driver. We have undertaken the study of eliminating chaos
by using an appropriate control signal Fc(x, t) in this modified CGLE that satisfies the GR
condition. At GR the amplitude, frequency and space-time shape of a very general driving
force must satisfy some conditions so that some dynamical properties of the conservative
system are preserved. We will call that solution a GR solution of nonintegrable equation. This
implies a local energy conservation requirement. The energy integral that is conserved for the
integrable Hamiltonian system is locally conserved for the full nonintegrable equation if the
GR condition holds. We can use this condition as a mechanism for chaos control when an
additional condition holds: the GR solution must be an asymptotically stable solution of the
(full) equation.

Let us assume for the optimal choice of the suppressory driving term, and its phase, the
corresponding actual solution x(t) remains—after the transient—close to the GR solution:
x(t) = xGR +δx(t), where δx(t) is a small deviation with d(δx)/dt � δx/T ′. By considering
the energy of the system as a ‘local almost adiabatic invariant’ [8], we write an approximate
GR condition 〈

dH

dt

〉
T ′

� 0, (1)

where H is the energy of the system and T ′ is the period of the solution of the integrable
Hamiltonian system.

2. The ac-driven CGLE

Also, spiral waves in the CGLE with a time-dependent periodic external force has been studied
[16]. Despite its simplicity, the forced CGLE, depending on several factors, such as the
spatial dimension, the mode of the frequency locking and the behaviour of the corresponding
unforced system, describes a large variety of phenomena [17–24]. For a sufficiently large
forcing amplitude, a homogeneous with no spatial structure has been observed in [25]. We
are interested here in the modified CGLE [26, 27] with an ac driver, in the form of a travelling
wave

φt = φ + (1 + ic1)φxx − (1 − ic3)|φ|2φ + Fc(x, t) − iε1 eiωt , (2)

where the term Fc(x, t) is the control signal and ε1 eiωt is the time-dependent external driver.
Here ε1 is the amplitude of the driver, and ω stands for its frequency. Without the control
signal and the driver, the turbulence develops when the Benjamin–Feir condition 1 − c1c3 < 0
is satisfied. Near the unstable side of the stability border phase turbulence is observed. Now
we rewrite equation (2) in the following form, for suppression of ST chaos:

iφt + c1φxx + c3|φ|2φ = i(φxx + φ − |φ|2φ) + iFc(x, t) + ε1 eiωt . (3)

When the right-hand side of equation (3) is zero, it reduces to the nonlinear Schrödinger
equation (NLSE). If φ(x, t) = f (x) eiωt is a soliton solution of NLSE phase locked with a
source, then we can use the following controlling signal:

Fc(x, t) = [f 3(x) − f (x) − fxx(x) − iε2] eiωt . (4)

Equation (3) (with Fc = 0, and without a driver) presents phase turbulence for c1 = 2,

c3 = 0.8. We can suppress the turbulence exhibited by equation (3) using Fc(x, t) given by
equation (4) with ω = 12 and f (x) is the one-soliton solution of the following ODE:

c1fxx − ωf + c3f
3 − ε = 0. (5)
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The fact that equation (4) has been taken that satisfies the GR condition provided ε = ε1 + ε2.
Thus in equation (3), if Fc(x, t) given by equation (4), the function φ(x, t) will emerge as the
exact solution of the complete equation.

3. Exact solutions

Our goal in this paper is to present the newly found periodic solutions of equation (5) expressed
as rational form in terms of elliptic functions. To accomplish this we start with a fractional
transformation (FT) [28]

f (x) = A + Bq2(x)

1 + Dq2(x)
, (6)

where the determinant AD − B �= 0. This FT connects the solutions of the modified CGLE
with a source to the elliptic equation q ′′ ± aq ± λq3 = 0, under the influence of a control
signal. Then it is clear that the coefficients of qn(x), for n = 0, 2, 4, 6 can be set to zero
to reduce the problem to an algebraic one, and obtain the solutions. In getting the algebraic
equations, use has been made of the following relations for various derivatives of q: q ′′ =
q + q3 and q ′2 = 1

2q4 +2E0, where E0 is the integration constant, for a = λ = 1. Furthermore,
it is asserted that q can be taken as any of the three Jacobi elliptic functions with an appropriate
modulus parameter: cn(x,m), dn(x,m) and sn(x,m). For definiteness, we start with the
assumption q = cn evidently, the coefficients of cnn(x,m), for n = 0, 2, 4, 6 can be set to
zero, and thereby obtain the four consistency equations. The identities satisfied by the cnoidal
functions make them amenable for finding the exact solutions of the nonlinear ODE of the form
described by equation (5). In simplifying the second derivative of q, we used the following
important identities satisfied by the cnoidal functions:

cn2 sn2 dn2 = cn2(1 − m) + (2m − 1)cn4 − m cn6

cn4 dn2 − m cn4 sn2 = cn4(1 − 2m) + 2m cn6

cn2 dn2 − sn2 dn2 − m cn2 sn2 = 2cn2(1 − 2m) + 3m cn4 + m − 1.

(7)

The four consistency conditions are

−ωA − 2c1(AD − B)(1 − m) + c3A
3 − ε = 0, (8)

−2ωAD − ωB + 6c1(AD − B)D(1 − m)− 4c1(AD − B)(2m − 1) + 3c3A
2B − 3εD = 0,

(9)
−AωD2 − 2ωBD + 4c1(AD − B)D(2m − 1) + 6c1(AD − B)m + 3c3AB2 − 3εD2 = 0,

(10)

−ωBD2 − 2c1(AD − B)Dm + c3B
3 − εD3 = 0. (11)

For example, if one considers the solution of equation (5) in terms of dn function, then it yields
a constant background solution for m = 0. Under special conditions, very interesting solutions
are obtained for equation (5). Thus, we shall present them here, with the specifications for the
regimes in which they apply, with the new rational solutions we found. The three solutions
are presented in the order that appears to be most natural, for various limiting values of the
modulus parameter of the cnoidal function.

Case I (trigonometric solution). In the consistency conditions (equations (8)–(11)) if we put
A = 0 and m = 0, we find that a periodic solution of the following type emerges:

f (x) = (ε/2c1)
cos2(x)

1 − (2/3) cos2(x)
, (12)

where c1 = ω
4 and c3 = 2ω3

27ε2 . This is a non-singular solution.
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Figure 1. Plot depicting the intensity of the dark solitary wave solution for ε = −1 and ω = 0.18.
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Figure 2. Plot depicting the intensity of the cnoidal wave solution for ε = 1, c1 = 0.5 and ω = 5.

Case II (hyperbolic solution). In order to obtain solitary wave solutions, we impose the
following conditions: B = 0 and m = 1. This yields

f (x) = (−3ε/ω)
1

1 − (3/2) sech2(x)
. (13)

This is a singular solution. If we consider the case, AD = 1 and B = 0, then we get a
non-singular, hyperbolic solution;

f (x) =
( −3ε

2(ω + 2c1)

)
1

1 + D sech2(x)
, (14)

where D = −2(ω+2c1)

3ε
, c1 = −(ω+ 9ε

8 )± 3
√

ε

2

√
ω+ 9ε

16

2 and c3 = 4
27ε2

(
ω3−12ωc2

1 −16c3
1

)
. After simple

manipulations, the above solution can be transformed to already reported results [29, 30].
This dark solitary wave solution has been depicted in figure 1 for the parameter values
specified in the figure caption.

Although we have not noted here, if we choose A,B and D non-zero, for m = 1, we
obtain a bright solitary wave.

Case III (pure cnoidal solutions). Now we obtain a cnoidal solution, for m = 1/2 and A = 0,

f (x) = (ε/c1)
cn2(x,m)

1 + D cn2(x,m)
, (15)

where D = − ω
6c1

and c3 = (
1
ε2

)(
5ω3

216 + c2
1ω

6

)
. We further emphasize that this cnoidal solution

is a non-singular solution for ω < 6c1, as depicted in figure 2.
At this point, we emphasize that the following cases are forbidden due to the fact that the

source becomes a vanishing one, as the presence of the source in equation (3) is pivotal for
the existence of the Lorentzian/rational-type solutions. For m = 0, A = 0 is not allowed, and
for m = 1, neither A = 0 nor D = 0 is allowed.
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Figure 3. Regular dynamics obtained when the controlling signal Fc(x, t) is used for ω = 12.

Since the localized solitons are usually robust, we have performed numerical simulations
to check the stability of the solutions pertaining to case I, i.e. the trigonometric solution.
It is worth mentioning that the numerical techniques based on the fast Fourier transform
(FFT) are expensive as they require the FFT of the external source. Hence, we have used
the semi-implicit Crank–Nicholson finite difference method [31] which is quite handy and
unconditionally stable, to show numerically that equation (3) shows regular dynamics when the
controlling function in equation (4) is applied. We numerically study the nonlinear evolution
of the exact solution under small perturbation by directly simulating equation (3) together with
equation (4) with initial condition φ(x, t = 0) = φ(x)[1 + w] eiωt . This solution has been
knitted on a lattice with grid size dx = 0.005 and dt = 5.0 × 10−6. The nonlinear evolution
of the same shows the regular dynamics as depicted in figure 3 with a perturbation w = 0.2,
although the peak of the intensity oscillates.

4. Conclusion

In conclusion, inspired by the efficacy of the recently developed GR condition, we have shown
that in the presence of the control signal, the chaotic behaviour of the ac-driven CGLE can be
suppressed and exact solitary wave solutions of both bright and dark can be obtained. This
has been accomplished by using a fractional transformation. The reported solutions are exact
solutions of the modified CGLE phase locked to the monochromatic driver provided the GR
condition is satisfied. The key concept that links the situation where we have been able to
suppress the chaos is based on the mutual cancellation of nonintegrable terms in view of the GR
condition. By a suitable ST perturbation F(x, t), we may be able to control different patterns
in the ac-driven perturbed sine-Gordon equation, and obtain exact solitary wave solutions in a
similar manner.
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